摘 要:高校的学习生活因科技的高速发展而发生了翻天覆地的变化,顺应时代的发展,高校教育信息集成化成为当今关注焦点。决定大学生学习成果和学习效率的基本保障是课堂出勤率及课堂上的专注度,因此大学生的课堂专注度问题一直是高校热门话题。得益于人脸识别技术的高速发展,文章采用 HAAR 特征值算法将课堂专注度集成为一个基于人脸识别的系统。该系统将人脸识别考勤加入其中,在大大提高教师上课效率的同时,还可精准监管学生在课堂上的专注度。
关键词:人脸识别;课堂抬头率;专注度统计
DOI:10.19850/j.cnki.2096-4706.2021.12.008
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2021)12-0029-04
Design of Classroom Concentration Based on Face Recognition
SHU Heng, ZHOU Li
(School of Computer and Software, Chengdu Jincheng College, Chengdu 611731, China)
Abstract: The study and life of colleges have undergone earth shaking changes due to the rapid development of science and technology. In line with the development of the times, the integration of educational information in colleges has become today's focus of attention. The basic guarantee of college students' learning achievement and learning efficiency is classroom attendance and classroom concentration. Therefore, college students' classroom concentration has always been a hot topic in colleges. Thanks to the rapid development of face recognition technology, this paper uses HAAR eigenvalue algorithm to integrate classroom concentration into a face recognition based system. The system adds face recognition attendance to it, which can not only greatly improve the efficiency of teachers in class, but also accurately monitor the concentration of students in class.
Keywords: face recognition; classroom rise rate; concentration statistics
参考文献:
[1] 赵纪河,简志群 . 大学生课堂问题行为的表现及其原因分 图 9 整体系统演示图 析 [J]. 新课程学习(中),2011(7):20.
[2] 牟国栋,谭俏俏,李田来,等 . 人脸识别技术在智慧校园 中的应用 [J]. 电脑知识与技术,2021,17(16):190-192.
[3] 陈文兵,李育霖,陈允杰 . 一种基于 CNN-SE-ELM 的年龄 和性别识别模型 [J]. 计算机工程与科学,2021,43(5):872-882.
[4] 段巨力 . 基于机器视觉的学生上课专注度的分析评测系统 [D]. 杭州:浙江工商大学,2018.
[5] 孙结冰 . 基于 Adaboost 人脸检测算法的多人标识系统研 发 [D]. 哈尔滨:黑龙江大学,2019.
作者简介:舒珩(1998—),男,汉族,四川广安人,本科在读, 研究方向:计算机视觉;周丽(1984—),女,汉族,四川广安人, 讲师,硕士,研究方向:计算机视觉、图像处理、目标检测。