摘 要:本文简要介绍了利用机器学习的算法能够对学生的视觉注意力进行量化,能够通过量化得到的数据对学生的在线学习时的注意力进行评估。多媒体应用为在线学习中的学生提供了优势,但也带来了显著的挑战。其中一个挑战是学生视觉关注度的测量和分析。本文提出了一种机器学习算法,对学生的注意力进行测量。在本文中,主要关注学生眼睛状态分类,提出一种基于机器学习的分类框架。该方法采用Gabor 来提取眼部状态的特征,采用SVM 算法学习分类器。实验表明这种方法在鲁棒性和正确率方面都达到了很好的性能,具有良好的实际应用价值。
关键词:机器学习;互联网多媒体教学;在线学习
中图分类号:TP391.41 文献标识码:A 文章编号:2096-4706(2019)03-0024-02
Qualitative Assessment of Attention in Online Learning Based on Machine Learning
XIANG Ziqi
(Jiangxi University of Finance and Economics,School of Software and Communication Engineering,Nanchang 330013,China)
Abstract:This paper briefly introduces that the machine learning algorithm can quantify the visual attention of students,and the quantitative data can be used to evaluate the attention of students in online learning. Multimedia application provides advantages for students in online learning,but it also brings significant challenges. One of the challenges is the measurement and analysis of students’visual attention. This paper presents a machine learning algorithm to measure students’attention. In this paper,we focus on the classification of students’eye states,and propose a classification framework based on machine learning. In this method,Gabor is used to extract the features of eye state,and SVM algorithm is used to learn the classifier. Experiments show that this method achieves good performance both in robustness and accuracy and has obvious practical application value.
Keywords:machine learning;internet multimedia teaching;online learning
参考文献:
[1] 胡艺龄,顾小清,赵春. 在线学习行为分析建模及挖掘 [J].开放教育研究,2014,20(2):102-110.
[2] 谌志华. 人工智能技术下的在线学习系统设计 [J]. 信息与电脑(理论版),2018(1):46-47+51.
[3] 王勃. 网络在线学习情绪检测系统研究与实现 [D]. 北京:北京交通大学,2017.
作者简介:项子琦(1999.08-),男,汉族,江西鹰潭人,本科, 主要研究方向:软件工程。