摘 要:随着国家在供给侧结构改革中对钢铁产能过剩的处理,钢铁企业面临着产能整合以及智能化改造的压力,亟需提升生产业务的自动化水平。文章以钢铁企业实际应用场景为基础,结合钢铁工艺与三维点云处理过程,分析了某钢铁企业热轧钢卷库采用三维点云技术实现步进梁、汽车及火车的识别与定位,有效地支持了库内作业的无人化,证明了三维点云技术在钢铁工业智能化改造领域具有重要作用与广阔应用前景。
关键词:点云技术;钢铁工业;三维模型;工业应用;点云处理
中图分类号:TP391.41 文献标识码:A 文章编号:2096-4706(2020)07-0142-03
Research on 3D Point Cloud Technology for Iron and Steel Industry Scene
XIE Yonghui,YANG Donghai
(CISDI Information Technology Co.,Ltd.,Chongqing 401122,China)
Abstract:With the country’s treatment of excess capacity in the supply side structural reform,iron and steel enterprises are facing the pressure of capacity integration and intelligent transformation,so it is urgent to improve the automation level of production business. Based on the practical application scenario of an iron and steel enterprise,this paper analyzes an iron and steel enterprise by combining the iron and steel technology with the three-dimensional point cloud processing process The three-dimensional point cloud technology is used to realize the identification and positioning of walking beam,car and train in the hot rolling coil warehouse,which effectively supports the unmanned operation in the warehouse,and proves that the three-dimensional point cloud technology has an important role and broad application prospect in the field of intelligent transformation of iron and steel industry.
Keywords:point cloud technology;steel industry;3D model;industrial application;point cloud processing
参考文献:
[1] 张绍泽. 面向三维可视化的激光扫描点云数据处理方法研究 [D]. 西安:西安电子科技大学,2017.
[2] 钱强飞. 碳减排背景下废钢铁再制造静态/ 动态生产调度研究 [D]. 南京:东南大学,2017.
[3] 郝亚彬. 钢铁能源介质预报及动态配置计划研究 [D]. 沈阳:东北大学,2012.
[4] 王一丁,李虎. 基于大尺度的点云精确配准算法 [J]. 北方工业大学学报,2018,30(5):17-21.
[5] 郎萍,高媛,秦品乐,等. 基于旋转图像特征描述子改进的ICP 算法 [J]. 计算机工程与设计,2016,37(10):2750-2753+2774.
[6] 王艺楠,郝矿荣,杨焕宇. 基于FPFH 特征和模糊聚类的自适应点云压缩 [J]. 电子科技,2017,30(11):73-77+80.
[7] 蒋丽,薛善良. 优化初始聚类中心及确定K 值的K-means算法 [J]. 计算机与数字工程,2018,46(1):21-24+113.
作者简介:
谢永辉(1992—),男,汉族,河南驻马店人,硕士,主要研究方向:机器视觉、点云处理等;
通讯作者:
杨东海(1988—),男,汉族,重庆人,硕士,主要研究方向:计算机系统、机器视觉等。