当前位置>主页 > 期刊在线 > 智能制造 >

智能制造2018年5期

基于机器视觉的智能读书架
陈榕福,何彬,林荣剑
(广东机电职业技术学院,广东 广州 510550)

摘  要:根据调查显示,中国小学生视力不良检出率达到45.71%,初中生达到74.36%,高中生达到83.28%,我国青少年近视率远高于其他国家。读写时坐姿不正确及视距过近等是导致近视的罪魁祸首,同时,这些不良习惯也是导致斜视、弱视和颈椎、脊椎发育不良的主要原因之一[1]。本文研制一款基于机器视觉的用于辅助中小学生矫正坐姿的智能读书架,能够帮助阅读者端正坐姿,挺直腰背,养成良好的读写习惯,提高学习效率,有效防止颈椎、脊椎问题,保护青少年的身心健康。


关键词:机器视觉;图像识别;STM32F103;树莓派;三轴加速度



中图分类号:TP391.41         文献标识码:A         文章编号:2096-4706(2018)05-0181-03


An Intelligent Book-reading Shelf Based on Machine Vision
CHEN Rongfu,HE Bin,LIN Rongjian
(Guangdong Mechanical & Electrical Polytechnic,Guangzhou 510550,China)

Abstract:Our survey shows that the adolescent’s myopia rate of our homeland is much higher than other countries,with poor sighted rate of Chinese primary school students coming to 45.71%,junior middle school students reaching to 74.36%,and high school students already up to 83.28%. It is reading and writing with incorrect seated position & overclose visual range that causes shortsightedness and also leads to heterotropia,amblyopia and hypogenesis of cervical vertebra & rachis. Based on machine vision,the booking-reading shelf mentioned in this essay is designed for correcting students’ seated position,helping readers to sit straight and to acquire a good habit of reading and writing,in order to protect their neck vertebrae and backbone and to improve the learning efficiency and to keep them healthy in mind and body.

Keywords:machine vision;image identification;STM32F103;Raspberry Pi;three axises acceleration


参考文献:

[1] 李秀娟. 基于儿童成长健康的智能书桌设计研究 [D]. 齐齐哈尔:齐齐哈尔大学,2016.

[2] 张锦博,张不已. 基于单片机和ADXL345 的数据采集与软件实现 [J]. 中国高新区,2017(16):43.

[3] 彭警,WU S L. Design of insulator gray measurement system based on BH1750FVI [J]. 石化技术,2017,24(8):47.


作者简介:陈榕福(1984.02-),男,广东清远人,中级职称,硕士,研究方向:电路与系统、智能设备开发。