当前位置>主页 > 期刊在线 > 智能制造 >

智能制造22年3期

基于改进 Mask R-CNN 算法的工业零件缺陷检测技术
尚洁,吴观茂
(安徽理工大学 计算机科学与工程学院,安徽 淮南 232001)

摘  要:为了提升工业零件缺陷检测的精度和速度,在 Mask R-CNN 的基础上,引入了引导锚框的 anchor 生成方案提升检测精度;在此基础上对 Mask R-CNN 网络框架进行改进,去掉 Mask 分支,实现检测速度的优化。采用的数据集是DAGM 工业缺陷数据集,并与先前的代表方法进行对比实验。实验表明,改进后的算法在检测精度方面对比原始算法提升了约1.94%,且速度也提升了 1.2 frame/s,提升了工业零件缺陷检测的速度和精度。


关键词:工业缺陷检测;Mask R-CNN;引导锚框



DOI:10.19850/j.cnki.2096-4706.2022.03.037


基金项目:安徽省自然科学基金面上项目(1908085MF189)


中图分类号:TP391.4                                      文献标识码:A                                    文章编号:2096-4706(2022)03-0137-04


Industrial Parts Defect Detection Technology Based on Improved Mask R-CNN Algorithm

SHANG Jie, WU Guanmao

(College of Computer Science and Engineering, Anhui University of Science & Technology, Huainan 232001, China)

Abstract: In order to improve the accuracy and speed of industrial parts defect detection, on the basis of Mask R-CNN, the anchor generation scheme of the guide anchor frame is introduced to improve the detection accuracy. on this basis, the Mask R-CNN network framework is improved and Mask branch is removed to realize the optimization of detection speed. The data set used is the DAGM industrial defect data set, and a comparison experiment with the previous representative method is carried out. Experiments show that the improved algorithm has improved by 1.94% in detection accuracy compared with the original algorithm, and the speed has also improved by 1.2 frame/s, the speed and accuracy of industrial parts defect detection are improved.

Keywords: industrial defect detection; Mask R-CNN; guide anchor frame


参考文献:

[1] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recoginition.Columbus:IEEE,2014:580-587.

[2] GIRSHICK R.Fast R-CNN [C]//2015 IEEE International Conference on Computer Vision(ICCV).Santiago:IEEE,2015:1440-1448.

[3] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks [J].IEEE Trans Pattern Anal Mach Intell,2017,39(6):1137-1149.

[4] REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified, Real-Time Object Detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE,2016:779-788.

[5] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal Speed and Accuracy of Object Detection [J/OL].arXiv:2004.10934 [cs.CV].[2022-01-02].https://arxiv.org/abs/2004.10934.

[6] HE K, GKIOXARI G,DOLLAR P, et al. Mask R-CNN [C]//2017 IEEE International Conference on Computer Vision(ICCV).Venice:IEEE,2017:2980-2988.

[7] WANG J,CHEN K,YANG S,et al.Region Proposal by Guided Anchoring [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach:IEEE,2019:2960-2969.

[8] ZOPH B,CUBUK E D,GHIASI G,et al.Learning Data Augmentation Strategies for Object Detection [J/OL].arXiv:1906.11172 [cs.CV].[2022-01-03].https://arxiv.org/abs/1906.11172.

[9] YU X,GONG Y,JIANG N,et al.Scale Match for Tiny Person Detection [C]//2020 IEEE Winter Conference on Applications of Computer Vision(WACV).Snowmass Village:IEEE,2020:1246-1254.


作者简介:尚洁(1996—),女,汉族,江苏连云港人,硕士在读,研究方向:目标检测等;通讯作者:吴观茂(1965—),男,汉族,安徽淮南人,副教授,博士,研究方向:计算机深度学习等。