当前位置>主页 > 期刊在线 > 智能制造 >

智能制造22年10期

基于跟驰模型的智能网联汽车混合交通流分析
赵辉
(兰州石化职业技术大学,甘肃 兰州 730060)

摘  要:针对人类驾驶车辆和智能网联车辆(CAV)混合的交通流,基于智能网联汽车跟驰特性,提出了一种灵敏度、平滑因子均可调的数学模型,用一个引理和一个定理来支持交通流稳定性标准,进行了一系列仿真模拟来分析车流量的稳定性。结果表明:在一定密度范围内,智能网联汽车交通流的稳定性强于混合交通流,且随着参数的增加,存在一个临界值。不同的灵敏度和平滑因子会影响交通流的稳定性,在一定边界条件下,随着灵敏度和平滑因子的增大,智能网联车流和混合交通流的稳定性均得到了增强。


关键词:智能网联汽车;跟驰模型;混合交通流;稳定性分析;数值仿真



DOI:10.19850/j.cnki.2096-4706.2022.10.034


中图分类号:TP391.9                                    文献标识码:A                                  文章编号:2096-4706(2022)10-0134-04


Analysis of Mixed Traffic Flow of CAV Based on Car-Following Model

ZHAO Hui

(Lanzhou Petrochemical University of Vocational Technology, Lanzhou 730060, China)

Abstract: Aiming at the mixed traffic flow of human-driven vehicles and CAV, this paper proposes a mathematical model with adjustable sensitivity and smoothing factor based on the car-following characteristics of CAV. A lemma and a theorem are used to support the traffic flow stability standard. A series of analog simulations are carried out to analyze the stability of traffic flow. The results show that within a certain density range, the stability of CAV traffic flow is stronger than that of mixed traffic flow, and there is a critical value with the increase of parameters. Different sensitivities and smoothing factors will affect the stability of traffic flow. Under certain boundary conditions, with the increase of sensitivity and smoothing factors, the stability of CAV and mixed traffic flow are all enhanced.

Keywords: CAV; car-following model; mixed traffic flow; stability analysis; numerical simulation


参考文献:

[1] BANSAL P,KOCKELMAN K M. Forecasting Americans’long-term adoption of connected and autonomous vehicle technologies [J].Transportation Research,2017,95:49-63.

[2] SAU J,MONTEIL J,BILLOT R,e t al.The root locus method:application to linear stability analysis and design of cooperative car-following models [J]. Transportmetrica B,2014,2(1):60-82.

[3] 秦严严,王昊,王炜,等 . 混有 CACC 车辆和 ACC 车辆的异质交通流基本图模型 [J]. 中国公路学报,2017, 30(10):127-136.

[4] ZHU W X,ZHANG H M. Analysis of mixed traffic flow with human-driving andautonomous cars based on carfollowing model [J]. Physica A:Statistical Mechanics and ItsApplications,2018,496:274-285.

[5] NAKAYAMA A,HASEBE K,SUGIYAMA Y. Instability of pedestrian flow and phase structurein a twodimensional optimal velocity model [J/OL].Physical Review E,2005,71(3)[2022-02-10].https://journals.aps.org/pre/ abstract/10.1103/PhysRevE.71.036121. 

[6] BANDO M,HASEBE K,NAKAYAMA A,et al. Dynamical model oftralfic congestion and numcricalsimulation [J/OL].Physical RevieuE,1995,51(2)[2022-02-10].https: //journals.aps.org/pre/abstract/10.1103/PhysRevE.51.1035. 

[7] GE J I,OROSZ G. Dynamics of connected vehicle systems with delayed acceleration feedback [J].Transportation Research,2014,46:46-64.

[ 8] CO IFMAN B . E s tim a ting t r avel time s and vehicletrajectories on freeways using dual loop detectors [J]. Transportation Research,2002,36(4):351-364.

[9] TALEBPOUR A,MAHMASSANI H S.Influence of connected and autonomous vehicles on traffic flow stability andthroughput [J].Transportation Research,2016,71:143-163.

[10] WARD J A.Heterogeneity,lane-changing and instability in traffic:Amathematical approach [D].Bristol: University of Bristol,2009.

[11] NGODUY D.Analytical studies on the instabilities of heterogeneous intelligent traffic flow [J].Communications in Nonlinear Science and Numerical Simulation,2013,18(10):2699-2706.

[12] BANDO M,HASEBE K,NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation [J].Physical Review,1995,51(2):1035-1042.

[13] ZHU W X,ZHANG H M. Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model [J].Physica A,2018,496(1):274-285.

[14] ZHANG J J,LIU M M,SUN Z T,et al. A Modified Mixed Car-following Model Considering that the Connected a- nd Intelligent Vehicle and Non-connected Vehicle [J].Journal of Physics:Conference Series,2021,1910(1):[2022-02-10].https://iopscience.iop.org/artic le/10.1088/1742-6596/1910/1/012019/pdf.


作者简介:赵辉(1991.09—),女,汉族,甘肃金昌人,助教,教师,硕士研究生,研究方向:电气自动化、汽车故障检测与诊断、智能网联汽车。