当前位置>主页 > 期刊在线 > 智能制造 >

智能制造22年12期

备件消耗保障智能预测系统
李伟玮,刘永志,甘洁,潘姣妮, 余洁
(广西财经学院 信息与统计学院,广西 南宁 530003)

摘  要:随着我国经济的发展,大型企业不断增加,高价值备件的消耗预测问题也日益突出。在大型企业里面,高价值备件往往在生产里面起到非常重要的作用,如果这类备件缺乏,会导致生产停滞,但这类备件过多,则又会导致大量资金积压。目前众多企业对备件耗用的预测还是依赖管理者的经验,但是备件种类多、库存量大、报废率高、备件安全性能要求高的设备,这些设备备件的管理更具复杂性,难以凭经验判断备件的储备定额。为了解决这类问题,文中系统搭建了一个可预测备件消耗量的平台,帮助企业预测某个时间段内高价值备件的耗用情况,根据预测值合理安排备件的采购计划,可有效减少库存,降低资金的积压。


关键词:备件;预测消耗;智能系统



DOI:10.19850/j.cnki.2096-4706.2022.012.043


基金项目:广西财经学院 2021 年大学生创新创业训练计划项目(202111548022)


中图分类号:TP18                                             文献标识码:A                                     文章编号:2096-4706(2022)12-0165-04


Intelligent Forecasting System for Spare Parts Consumption Guarantee

LI Weiwei, LIU Yongzhi, GAN Jie, PAN Jiaoni, YU Jie

(School of Information and Statistics, Guangxi University of Finance and Economics, Nanning 530003, China)

Abstract: With the development of China’s economy and the increasing number of large enterprises, the consumption prediction of high-value spare parts is becoming increasingly prominent. In large enterprises, high-value spare parts often play a very important role in production. If such spare parts are lacking, it will lead to production stagnation, but too many of these spare parts will lead to a large amount of capital backlog. At present, many enterprises still rely on the experience of managers to predict the consumption of spare parts. However, for equipment with many kinds of spare parts, large inventory, high scrap rate and high requirement for safety performance of spare parts, the management of these spare parts is more complicated, and it is difficult to judge the reserve quota of spare parts by experience. In order to solve such problems, builds systematically a platform that can predict the consumption of spare parts, helps enterprises predict the consumption of high-value spare parts in a certain period of time, and arranges the purchase plan of spare parts reasonably according to the predicted value, so as to effectively reduce the inventory and the backlog of funds.

Keywords: spare part; forecast consumption; intelligent system 


参考文献:

[1] 黄照协,李前会,孙思浩,等 . 备件消耗预测方法研究现状及发展 [J]. 舰船电子工程,2015,35(1):14-18+113.

[2] 庄严,陈红磊,封占伟,等.浅议如何做好设备备件管理 [J].设备管理与维修,2019(24):21-22.

[3] 王强,郭东栋,高飞,等 . 设备备件库存管理、消耗及订购模式分析 [J]. 现代制造技术与装备,2017(3)176-179.

[4] 刘跃强,高安 .ABC 分类法在备件成本管理中的应用 [J].冶金财会,2021,40(7):22-24.

[5] 时明亮.信息化技术在发电企业设备安全管理中的应用[J].现代信息科技,2020,4(24):150-152.


作者简介:李伟玮(2003.01—),女,汉族,广西玉林人,本科在读,研究方向:网站前端;刘永志(1998.10—),男,汉族,广西河池人,本科在读,研究方向:网站后台;潘姣妮(2000.07—),女,汉族,广西河池人,本科在读,研究方向:网站后台;甘洁(2001.05—),女,汉族,云南昭通人,本科在读,研究方向:数据挖掘;余洁(2001.01—),女,汉族,广西桂林人,本科在读,研究方向:网站前端。