当前位置>主页 > 期刊在线 > 电子工程 >

电子工程2019年17期

基于生物地理优化算法的BIPV 多目标规划
程蒙¹,赵双芝²,韩雪龙³,杨永前¹
(1. 国网江苏省电力工程咨询有限公司,江苏 南京 210008;2. 江苏方天电力技术有限公司,江苏 南京 211102,3. 衢州学院,浙江 衢州 324000)

摘  要:本文针对城市光伏建筑一体化(BIPV)接入城市配电网的优化规划问题,建立了以光伏发电(PV)投资的动态回收年限最小和光伏发电接入后配电系统的静态电压稳定性最好为目标的多目标优化规划模型。将NSGA- Ⅱ中的快速非支配排序策略与精英保留策略引入生物地理算法,形成多目标生物地理算法(MOBBO),并用此算法求解PV 接入城市配电网的位置及容量的Pareto 最优解集。最后以IEEE33 节点配电系统为例进行PV 的多目标优化规划,并将优化结果与NSGA- Ⅱ算法进行比较,结果表明多目标生物地理算法具有更好的收敛性能和寻优能力,最后的优化结果大大增加了PV 优化配置的灵活性和科学性。


关键词:NSGA- Ⅱ;生物地理算法;BIPV;动态回收年限;Pareto 最优解



中图分类号:TM715         文献标识码:A         文章编号:2096-4706(2019)17-0029-05


Multi-objective BIPV Planning Based on Biogeography-based Optimization Algorithm

CHENG Meng1,ZHAO Shuangzhi2,HAN Xuelong3,YANG Yongqian1

(1.State Grid Jiangsu Electric Power Engineering Consulting Co.,Ltd.,Nanjing 210008,China;2.Jiangsu Frontier Electric Technology Co.,Ltd.,Nanjing 211102,China;3.Quzhou University,Quzhou 324000,China)

Abstract:In allusion to the optimal planning problem of building integrated photovoltaic(BIPV) in the distribution network,a multi-objective,in which the minimization of dynamic payback period as well as optimal stability of steady state voltage are token as objectives,is built. The optimal Pareto solution set of network-connecting positions and configured capacity of PV are solved by multiobjective biogeography-based optimization algorithm(MOBBO),which is formed by putting rapid non-dominated sorting strategy and elitism strategy of NSGA- Ⅱ algorithm into biogeography-based optimization algorithm. Finally,taking testing system of IEEE33 node distribution network as an example to proceed multi-objective optimal planning of PV. The proposed algorithm has better global convergence and searching capability compared to the results obtained with the NSGA- Ⅱ algorithm. The final optimal results increased the flexibility and scientificity of the optimized configuration of PV.

Keywords:NSGA- Ⅱ;biogeography-based algorithm;BIPV;dynamic recovery period;Pareto optimal solution


参考文献:

[1] 徐静,陈正洪,唐俊,等. 建筑光伏并网发电系统的发电量预测初探 [J]. 电力系统保护与控制,2012,40(18):81-85.

[2] 王守相,王慧,蔡声霞. 分布式发电优化配置研究综述 [J].电力系统自动化,2009,33(18):110-115.

[3] NERVES AC,RONCESVALLES JCK. Application ofevolutionary programming to optimal siting and sizing and optimal scheduling of distributed generation [C]//TENCON 2009-2009 IEEE Region 10 Conference.S.l.:s.n.,2009:1-6.

[4] 朱勇,杨京燕,张冬清. 基于有功网损最优的分布式电源规划 [J]. 电力系统保护与控制,2011,39(21):12-16.

[5] EL-KHATTAM W,HEGAZY YG,SALAMA MMA. An Integrated Distributed Generation Optimization Model for Distribution System Planning [J].IEEE Transactions on Power Systems,2005,20(2):1158-1165.

[6] 叶承晋,黄民翔. 基于改进粒子群算法的分布式电源经济性最优规划 [J]. 电力系统保护与控制,2012,40(19):126-132.

[7] 郑漳华,艾芊,顾承红,等. 考虑环境因素的分布式发电多目标优化配置 [J]. 中国电机工程学报,2009,29(13):23-28.

[8] 于青,刘刚,刘自发,等. 基于量子微分进化算法的分布式电源多目标优化规划 [J]. 电力系统保护与控制,2013,41(14):66-72.

[9] Moradi M H,Tousi S M R,Abedini M. Multi-objective PFDE algorithm for solving the optimal siting and sizing problem of multiple DG sources [J].International Journal of Electrical Power &Energy Systems,2014,56(3):117-126.

[10] 王瑞琪,李珂,张承慧,等. 基于多目标混沌量子遗传算法的分布式电源规划 [J]. 电网技术,2011,35(12):183-189.

[11] 魏峰. 火电与风电投资效益比较研究 [D]. 保定:华北电力大学,2013.

[12] 黄松,杨建华,季宇,等. 基于NSGA- Ⅱ的多类型分布式电源在配电网中的优化配置 [J]. 华东电力,2013,41(12):2484-2488.

[13] SHAH A,SIMON D,RICHTER H. Constrained biogeographybased optimization for invariant set computation [C]//American Control Conference (ACC),2012. S.l.:s.n.,2012:2639-2644.

[14] 刘学平,刘天琪,王剑. 基于小生境的配电网多目标分布式电源规划 [J]. 电网技术,2010,34(10):126-130.

[15] 王斯成. 分布式光伏发电政策现状及发展趋势 [J]. 太阳能,2013(8):8-19.


作者简介:

程蒙(1990-),男,汉族,河南信阳人,项目经理,助理工程师,硕士研究生,研究方向:电网建设与经济运行;

赵双芝(1988-),女,汉族,河北保定人,专业员,助理工程师,硕士研究生,研究方向:新能源涉网试验及配网规划;

韩雪龙(1988-),男,汉族,河北石家庄人,实验员,助理工程师,硕士研究生,研究方向:分布式发电并网及微电网技术;

杨永前(1988-),男,汉族,河南平顶山人,项目经理,工程师,硕士研究生,研究方向:电网建设及电力系统暂态稳定控制。