当前位置>主页 > 期刊在线 > 电子工程 >

电子工程21年6期

基于边界元法的耳机声振耦合分析及声场优化
林永霖 1,黎亚军 2
(1. 中国人民解放军海军七〇一工厂,北京 100015;2. 中国科学院大学,北京 100049)

摘  要:文章针对耳机主被动降噪问题,提出了一种声学边界元与有限元声振耦合算法,构建某型军用耳机的声场分析模型,完整建立耳罩内部各腔体以及振动单体,研究了耳机在不同耳罩结构时的内外声场分布,为耳机被动降噪提供了依据,为了进一步提高主动降噪性能,建立以耳罩声压频响为目标参数,指出了不同麦克风位置时的声压频响差异,该研究结果为耳机主动降噪工程研发提供了一种方法。


关键词:声学边界元;声振耦合;耳机;耳罩;主动降噪;被动降噪;有限元



DOI:10.19850/j.cnki.2096-4706.2021.06.011


中图分类号:TB535;O39                             文献标识码:A                                      文章编号:2096-4706(2021)06-0042-06


Acoustic Vibration Coupling Analysis and Sound Field Optimization of Earphone Based on Boundary Element Method

LIN Yonglin1 ,LI Yajun2

(1.No.701 Factory of PLA(N),Beijing 100015,China;2.University of Chinese Academy of Sciences,Beijing 100049,China)

Abstract:Aiming at the problem of active and passive noise reduction of earphones,this paper proposes an acoustic boundary element and finite element acoustic vibration coupling algorithm,constructs a sound field analysis model of a certain type of military earphone,and establishes the internal cavities and vibration monomer of the earmuffs completely,and studies the internal and external acoustic field distribution of earphones with different earmuff structures,which provides a basis for passive noise reduction of earphones. In order to further improve the active noise reduction performance,the target parameter of the sound pressure frequency response of the earmuffs is established,and the difference of sound pressure frequency response at different microphone positions is pointed out. The research results provide a method for the research and development of active noise reduction engineering of earphones.

Keywords:acoustic boundary element;acoustic vibration coupling;earphone;earmuff;active noise reduction;passive noise reduction;finite element


参考文献:

[1] MASUMOTO T,YASUDA Y,INOUE N,et al. Fast Calculation of Far-Field Sound Directivity Based on Fast Multipole Boundary Element Method [J].Journal of Theoretical and Computational Acoustics,2020,28(4).

[2] GILVEY B,TREVELYAN J,HATTORI G. Singular enrichment functions for Helmholtz scattering at corner locations using the boundary element method [J]. International Journal for Numerical Methods in Engineering,2020,121(3):519-533.

[3] 鲁建锋,许孝卓,高岩,等 . 磁阻式悬浮平台侧向气隙控 制研究 [J]. 电子科技,2020,33(10):15-20+63.

[4] 许伯强,来锴,徐桂东,等 . 复合层合梁层裂损伤与超声 导波的相互作用研究 [J]. 电子科技,2015,28(11):55-60.

[5] 李俞霖,向宇,伍松 . 基于声全息技术的噪声源识别与 DSP 实现 [J]. 电子科技,2017,30(4):27-31.

[6] BRITO W K F,MAIA C D C D,MENDONCA A V. Bending analysis of elastically connected Euler–Bernoulli double-beam system using the direct boundary element method [J].Applied Mathematical Modelling,2019,74:387-408.

[7] HAERI H. Experimental and numerical study on crack propagation in pre-cracked beam specimens under three-point bending [J]. Journal of Central South University,2016,23(2):430-439.

[8] LIU Y J,RIZZO F J. A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems [J].North-Holland,1992,96(2):271–287.

[9] KRESS R. On the condition number of boundary integral operators in acoustic and electromagnetic scattering [J].The Quarterly Journal of Mechanics and Applied Mathematics,1985,38(2):323- 341.

[10] LIU Y J. Analysis of shell-like structures by the Boundary Element Method based on 3-D elasticity:formulation and verification [J]. International Journal for Numerical Methods in Engineering,1998,41 (3):541-558.

[11] 庞岳峰,马占顺,张佳宁,等 . 基于修正最小二乘法的 测控设备同站引导算法 [J]. 电子科技,2019,32(3):82-86.

[12] OTHMAN N Y,SALEH Z A,OMRAN Z A. Development of Stage–Distance–Discharge Relationship and Rating Curve using Least Square Method [J].Civil Engineering Journal,2019,5(9):1959- 1969.

[13] ZHANG J M,LIN W C,SHU X M,et al. A dual interpolation boundary face method for exterior acoustic problems based on the Burton–Miller formulation [J].Engineering Analysis with Boundary Elements,2020,113(C):219-231.

[14] KAO J H,CHEN K H,CHEN J T,et al. Isogeometric Analysis of the Dual Boundary Element Method for the Laplace Problem With a Degenerate Boundary [J].Journal of Mechanics,2020,36(1): 35-46.

[15] FENG H,GAO Y,JYU L L,et al. A new collocation method for solving certain Hadamard finite-part integral equation [J]. International Journal of Numerical Analysis and Modeling,2018,16 (2):240-254.

[16] FEDOROV V E. Error estimate of the nonstationary Galerkin method for a higher order equation with changing time direction [C]//AIP Conference Proceedings,2017,1907(1):1-4.

[17] LI K M,WANG Y M. Rapid computation of waves diffracted by an absorbing plane with precise error bounds [J].Journal of the Acoustical Society of America,2016,139(4):2010-2010.

[18] WANG Q,CHANG W D,LIU S H,et al. Study on noisevibration coupling characteristics of premixed methane–air flame propagation in a tube with an acoustic absorption material [J].RSC Advances,2019,9(49):28323-28329.

[19] 张冠军,朱翔,李天匀,等 . 双层加筋板水下声振耦合 特性研究 [J]. 船舶力学,2019,23(1):78-87.

[20] LUO W H,HUANG T Z,LI L,et al. Quadratic spline collocation method and efficient preconditioner for the Helmholtz equation with the Sommerfeld boundary conditions [J].Japan Journal of Industrial and Applied Mathematics,2016,33(3):701-720.


作者简介:林永霖(1979—),男,汉族,福建漳州人,工程 师,硕士,研究方向:信号处理、电子信息;黎亚军(1986—),男, 汉族,甘肃灵台人,工程师,博士,研究方向:有源噪声控制。