摘 要:随着电力企业的不断发展,供电公司对用电客户信誉情况及客户欠费风险情况越来越重视。从积累的大量电力营销数据的分析和研究中构建客户信誉等级模型和客户欠费风险模型,进而从中找到二者的关系成为供电公司的研究重点。为此,该文提出了基于大数据分析客户信誉与客户欠费间的关系的研究,对营销系统的日常业务数据进行深入的挖掘分析,重新构建客户信誉等级和客户欠费风险模型,判别存在电费回收高风险的用户,并依据客户类别生成分析仪表盘,多维分析以便降低电费回收风险,同时,找到客户信誉与客户欠费间的关系,以便业务人员针对具体客户采用适当的策略开展工作。
关键词:大数据分析;客户信誉;客户欠费;OLAP 多维分析;电力营销
中图分类号:TP311.1;F426.61 文献标识码:A 文章编号:2096-4706(2020)02-0126-03
Research on the Relationship Between Customer Reputation and Customer Arrears Based on Big Data Analysis
XU Jialing
(Information Center of Qingyuan Power Supply Bureau of Guangdong Power Grid Co.,Ltd.,Qingyuan 511500,China)
Abstract:With the continuous development of power companies,power supply companies are paying more and more attention to the credit situation of customers and the risk of customers’arrears. From the analysis and research of the accumulated large amount of electric power marketing data,it becomes the research focus of the power supply company to build the customer credit rating model and the customer default risk model,and then find the relationship between them. For this reason,in this paper a research based on big data analysis of customer reputation and customer arrears is proposed. The daily business data of the marketing system is deeply analyzed and analyzed,and the customer credit rating and customer arrearage risk model are reconstructed to determine the existence of electricity fee recovery. High-risk users,and generate analytical dashboards based on customer categories,multi-dimensional analysis to reduce the risk of electricity bill recovery,and at the same time,find the relationship between customer reputation and customer arrears,so that business personnel can work with specific strategies for specific customers.
Keywords:big data analysis;customer reputation;customer arrears;OLAP multidimensional analysis;power marketing
参考文献:
[1] 刘晓葳. 基于数据挖掘的保险客户风险—贡献评级管理 [J]. 保险研究,2013(3):100-109.
[2] 曾小青,徐秦,张丹,等. 基于消费数据挖掘的多指标客户细分新方法 [J]. 计算机应用研究,2013,30(10):2944-2947.
[3] 刘明学,陈祥,杨珊妮. 基于逻辑回归模型和确定性系数的崩滑流危险性区划 [J]. 工程地质学报,2014,22(6):1250-1256.
[4] 徐建民,粟武林,吴树芳,等. 基于逻辑回归的微博用户可信度建模 [J]. 计算机工程与设计,2015,36(3):772-777.
[5] 刘晓娜,封志明,姜鲁光. 基于决策树分类的橡胶林地遥感识别 [J]. 农业工程学报,2013,29(24):163-172+365.
[6] 张晓春,倪红芳,李娜. 基于数据挖掘的供电企业客户细分方法及模型研究 [J]. 科技与管理,2013,15(6):104-109.
[7] 张琪,周琳,陈亮,等. 决策树模型用于结核病治疗方案的分类和预判 [J]. 中华疾病控制杂志,2015,19(5):510-513.
[8] 覃文文,戢晓峰. 基于K-means 聚类的快递企业客户细分方法 [J]. 世界科技研究与发展,2011,33(6):955-958+969.
[9] 张卫东,李媛. 基于C5.0 算法的电信用户流失预警分析 [J]. 宜宾学院学报,2014,14(6):119-122.
[10] 魏巍. 基于客户数据库的市场细分实证研究——以某高校网络超市数据为例 [J]. 河南工程学院学报(社会科学版),2011,26(2):32-38.
作者简介:徐佳玲(1986.11-),女,汉族,浙江诸暨人,局域网及终端管理助理专责,助理工程师,本科,研究方向:终端局域网管理、资产管理。