当前位置>主页 > 期刊在线 > 信息化应用 >

信息化应用22年19期

基于 Sentinel-1 时间序列数据的肥西县水稻提取研究
徐晓臣,任江龙
(中水北方勘测设计研究有限责任公司,天津 300222)

摘  要:水稻生长过程中会产生物候信息,通过遥感影像可对这一信息进行监测。由于光学影像受云雨影响,存在数据缺失问题,合成孔径雷达数据可有效弥补光学影像缺点。文章以肥西县为例,通过 Google earth engine 平台,构建一种基于Sentinel-1 时间序列数据的水稻种植信息提取方法。通过分析不同地类上 SAR 后向散射系数的时序特征,采用支持向量机和随机森林方法对所提取的水稻信息进行对比分析。结果表明,Sentinel-1 时序数据能有效识别水稻物候生长特征。


关键词:水稻;Sentinel-1 时间序列;GEE;支持向量机;随机森林



DOI:10.19850/j.cnki.2096-4706.2022.19.026


中图分类号:TP311                                         文献标识码:A                                文章编号:2096-4706(2022)19-0109-03


Research on Rice Extraction in Feixi County Based on Sentinel-1 Time Series Data

XU Xiaochen, REN Jianglong

(Zhongshui North Survey, Design and Research Co., Ltd., Tianjin 300222, China)

Abstract: Phenological information is produced during rice growth, which can be monitored through remote sensing images. Due to the influence of cloud and rain on optical images, there is a problem of data missing. Synthetic aperture radar data can effectively remedy the shortcomings of optical images. Taking Feixi County as an example, this paper constructs a rice planting information extraction method based on Sentinel-1 time series data through Google earth engine platform. By analyzing the temporal characteristics of SAR backscattering coefficients over different land types, the rice information extracted is compared and analyzed using support vector machine and random forest method. The results shows that Sentinel-1 time series data can effectively identify rice phenological growth characteristics.

Keywords: rice; Sentinel-1 time series; GEE; support vector machine; random forest 


参考文献:

[1] 李志欣,裴玉东,郑璐 . 遥感处理技术应用浅述 [J]. 现代信息科技,2020,4(11):51-53+56.

[2] BAZZI H,BAGHDADI N,EI-HAJJ M,et al. Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue,France [J]. Remote Sensing,2019,11(7):887.

[3] 杨璟,丁明涛,李振洪,等 .Google Earth Engine 支持下的青海湖空间格局演变分析 [J/OL].[2022-06-15].https://www.doc88.com/p-20229751521887.html.

[4] LUO C,QI B S,LIU H J,et al.Using Time Series Sentinel-1 Images for Object-Oriented Crop Classification in Google Earth Engine [J].Remote Sensing,2021,13(4):561.

[5] 罗桓,李卫国,景元书,等 . 基于 SVM 的县域冬小麦种植面积遥感提取 [J]. 麦类作物学报,2019,39(4):455-462.

[6] 王克晓,周蕊,虞豹,等 . 基于遥感的西南地区水稻种植信息提取 [J]. 江苏农业科学,2019,47(19):231-235.


作者简介:徐晓臣(1990—),男,汉族,山东曲阜人,工程师,硕士研究生,研究方向:摄影测量与遥感。