当前位置>主页 > 期刊在线 > 信息化应用 >

信息化应用22年20期

基于数据分析的共享电动汽车 PMP 项目 启动风险管理研究
褚玉飞
(常州法商委员会,江苏 常州 213000)

摘  要:文章先介绍 PMP 项目启动风险管理识别的过程、技术和应对方法;再介绍聚类分析的特点和工作方式;找出聚类分析识别 PMP 项目启动风险的优势、分析流程和方法,从定义 PMP 项目启动风险管理的问题开始,到数据文本挖掘、评估、清洗、整理,通过 K-means 进行聚类分析,得出结论。以 TM 公司成功利用聚类分析识别共享电动汽车 PMP 项目启动风险并进行有效风险管理为例进行实证研究,得出此方法在 PMP 项目启动风险管理过程中应用的科学性、可行性和有效性。


关键词:大数据挖掘;PMP 项目启动风险管理;聚类分析



DOI:10.19850/j.cnki.2096-4706.2022.20.032


中图分类号:TP391                                          文献标识码:A                               文章编号:2096-4706(2022)20-0136-05


Research on Risk Management of PMP Project Initiation of Shared Electric Vehicle Based on Data Analysis

CHU Yufei

(Changzhou Legal and Commercial Commission, Changzhou 213000, Jiangsu)

Abstract: The first introduces the process, technology and coping methods of PMP project start-up risk management identification. The characteristics and working mode of cluster analysis are introduced.Find out the advantages, analysis processes and methods of cluster analysis to identify PMP project start-up risks, from the definition of PMP project start-up risk management problems to data text mining, evaluation, cleaning, sorting, through k-means clustering analysis, and draw conclusions. Taking TM Company’s successful use of cluster analysis to identify the start-up risk of PMP project of shared electric vehicles and carry out effective risk management as an example, the empirical study is carried out, and the scientific, feasible and effective application of this method in the process of PMP project start-up risk management is concluded.

Keywords: Big data mining; The initiating risk management of PMP; Cluster analysis


参考文献:

[1] NAGAPPAN G,C H E L L A P P A N C . S m a r t Transportation System [J].International Journal Of Computer Science And Applications,2009,2(1):14-18.

[2] DIN S,AHMAD A,PAUL A,e t al . Edg e Computing:From Hype to Reality [M].Springer International Publishing,2019.

[3] 孔德洋,王敏敏,马丹 . 电动汽车分时租赁动态定价策略研究 [J]. 上海汽车,2017(1):38-43.

[4] 付爱莉 . 电动汽车充电基础设施投资价值驱动因素研究[D]. 北京:北京交通大学,2016.

[5] 郁启麟 .K-means 算法初始聚类中心选择的优化 [J]. 计算机系统应用,2017,26(5):170-174.

[6] 王欢,李红辉,张骏温 . 改进 K-means 聚类的云任务调度算法 [J]. 计算机与现代化,2017(2):1-5+11.


作者简介:褚玉飞(1985.03—),男,汉族,江苏常州人,硕士研究生,研究方向:数据分析。