摘 要:针对当前智能手机解锁的特点,利用用户手指滑动屏幕加速度不同的生物特性,提出了一种基于 RL-DTW 算法的智能手机滑动解锁认证方法。并通过对传统 DTW 算法和优化 RL-DTW 算法进行数据对比,得出 RL-DTW 算法在辨别模仿者方面的加速度确定概率值高达 93%,远高于 DTW 算法的 72%,很好地满足了用户对智能手机随意形状滑屏解锁的需求。
关键词:生物特征;滑动解锁;RL-DTW 算法
DOI:10.19850/j.cnki.2096-4706.2022.013.002
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2022)13-0006-06
Research and Implementation of Smart Phone Identity Authentication Mechanism Based on RL-DTW
LIU Cong, LI Nengneng
(Weifang Vocational College, Weifang 261041, China)
Abstract: Aiming at the characteristics of current smart phone unlocking, this paper proposes a smart phone slide unlock authentication method based on RL-DTW algorithm by using the different biological characteristics of user’s finger sliding screen acceleration. And through the data comparison between the traditional DTW algorithm and the optimized RL-DTW algorithm, it is concluded that the acceleration determination probability value of the RL-DTW algorithm in the aspect of identifying imitators is as high as 93%, which is much higher than 72% of the DTW algorithm. It is well satisfied the user’s demand for the random shape slide screen unlocking of the smart phone.
Keywords: biological characteristics; slide unlock; RL-DTW algorithm
参考文献:
[1] 李耀成,张凌宇,姜廷慈 . 基于图形密码的手机安全性研究[J]. 齐齐哈尔大学学报(自然科学版),2014,30(5):29-33.[2] 龚遂 . 浅谈图形密码 [J]. 科协论坛,2009(4):89-90.
[3] 刘丽群,李晨琛 . 基于可用性视角的用户技术选择与接受研究——以智能手机密码系统为例 [J]. 新闻与传播评论,2015(0):48-58.
[4] 王竞博 . 智能终端的指纹解锁原理 [J]. 中国新通信,2017,19(8):101-102.
[5] PRABHAKAR S,PANKANTI S,JAIN A K. Biometric recognition: security and privacy concerns [J].IEEE security & privacy, 2003,1(2):33-42.
[6] 郑方,艾斯卡尔·肉孜,王仁宇,等 . 生物特征识别技术综述 [J]. 信息安全研究,2016,2(1):12-26.
[7] BAUM L E,PETRIE T. Statistical Inference for Probabilistic Functions of Finite State Markov Chains [J].The Annals of Mathematical Statistics,1966,37(6):1554-1563.
[8] HE X F,YAN S C,HU Y X,et al. Face recognition using Laplacian faces [J].IEEE Transactions on Pattern Analysis and Machine 2022.07 11 Intelligence,2005,27(3):328-340.
[9] DAUGMAN J. Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns [J]. International Journal of Computer Vision,2001,45(1):25-38.
[10] DAUGMAN J G. High confidence visual recognition of persons by a test of statistical independence [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1148-1161.
[11] KIRBY M,SIROVICH L. Application of the KarhunenLoeve procedure for the characterization of human faces [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(1):103-108.
[12] 潘胜男 . 虹膜识别前处理算法的研究 [D]. 长春:吉林大学,2017.
[13] MALTONI D,MAIO D,JAIN A K,et al. Handbook of Fingerprint Recognition [M].London:Springer,2009.
[14] SALVADOR S,CHAN P. Toward accurate dynamic time warping in linear time and space [J].Intelligent Data Analysis,2007,11(5):561-580.
[15] ROWLEY H A,BALUJA S,KANADE T. Rotation Invariant Neural Network-Based Face Detection [C]//1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Santa Barbara:IEEE,1998:963.
[16] MINSKY M L. Theory of neural-analog reinforcement systems and its application to the brain model problem [D].Princeton: Princeton University,1954.
[17] MINSKY M. Steps toward Artificial Intelligence [J]. Proceedings of the IRE,1961,49(1):8-30.
[18] 胡金平,陈若珠,李战明 . 语音识别中 DTW 改进算法的研究 [J]. 微型机与应用,2011,30(3):30-32.
[19] KELA J,KORPIPÄÄ P,MÄNTYJÄRVI J,et al. Accelerometer-based gesture control for a design environment [J]. Personal and Ubiquitous Computing,2006,10(5):285-299.
[20] 曹秀莲 . 基于动态手势的身份认证方法及其在智能手机上的实现 [D]. 长沙:中南大学,2013.
[21] AGRAWAL S,CONSTANDACHE I,GAONKAR S,et al. PhonePointpen: using mobile phones to writein air [C]//Proceedings of the 1st ACM workshop on Networking, systems, and applications for mobile handhelds.Barcelona:Association for Computing Machinery, 2009:1-6.
[22] QUEK C,ZHOU R W. Antiforgery: a novel pseudo-outer product based fuzzy neural network driven signature verification system [J].Pattern Recognition Letters,2002,23(14):1795-1816.
[23] ROSS A A,NANDAKUMAR K,JAIN A K. Handbook of Multi-biometrics [C].NewYork:Springer-Verlag,2006.
[24] CORTES C,VAPNIK V. Support Vector Networks [J].Machine Learning,1995,20:273-297.
[25] 陈立万 . 基于语音识别系统中 DTW 算法改进技术研究[J]. 微计算机信息,2006(5):267-269.
[26] 杨洁,康宁 . 动态时间规整 DTW 算法的研究 [J]. 科技与创新,2016(4):11-12.
[27] VIOLA P,JONES M. Rapid object detection using a boosted cascade of simple features [C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai:IEEE,2001(1):1.
[28] OSUNA E,GIROSI F. Reduceing the run-time complexity of Support Vector Machines [EB/OL].1998:1-10[2022-03-18].https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1023B2EB383AED B7F09E0EE4311A80F3?doi=10.1.1.49.506&rep=rep1&type=pdf.
作者简介:刘聪(1990—),男,汉族,山东潍坊人,助教,硕士研究生,研究方向:图像识别和算法研究;李能能(1993—),女,汉族,山东潍坊人,助教,硕士研究生,研究方向:人工智能和大数据。