当前位置>主页 > 期刊在线 > 信息技术 >

信息技术23年7期

基于人脸识别的矿井人员考勤管理系统
肖蕊,王继鹏
(中国矿业大学(北京) 机电与信息工程学院,北京 100083)

摘  要:煤矿职工管理工作对煤矿企业发展产生了重大影响。因此对煤矿的矿井人员考勤进行了调查,发现煤矿现在的矿井人员考勤打卡方式会出现替打卡、漏打卡现象。针对煤矿工人的贴牌、顶替现象,提出并设计了以人脸识别为基础的矿井人员出勤管理系统。系统将人脸识别和射频卡识别相结合,带有射频卡员工信息与人脸检测识别的员工身份信息一致算作考勤成功。上述考勤系统可以有效杜绝员工虚假考勤,提高企业管理效率,利于企业长远发展。


关键词:考勤管理系统;人脸识别;卷积神经网络



DOI:10.19850/j.cnki.2096-4706.2023.07.009


中图分类号:TP391.4                                      文献标识码:A                                    文章编号:2096-4706(2023)07-0035-04


Mine Personnel Attendance Management System Based on Face Recognition

XIAO Rui, WANG Jipeng

(School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China)

Abstract: The coal mine management work has had a significant impact on the development of coal mine enterprises. Therefore, this paper investigates the attendance of mine personnel in the coal mine, and finds that the current punch the clock mode of mine personnel's attendance in the coal mine can cause the phenomenon of replacing or missing punch the clock. A mine personnel attendance management system based on face recognition is proposed and designed, aiming at the phenomenon of coal mine workers' labeling and replacement. The system combines face recognition and radio frequency card recognition, and the consistency of employee information with radio frequency card and employee identity information identified by face detection is considered as attendance success. The above attendance system can effectively eliminate false attendance of employees, improve enterprise management efficiency, and facilitate the long-term development of the enterprise.

Keywords: attendance management system; face recognition; Convolutional Neural Networks


参考文献:

[1] 刘宝玉,亢健铭,范树凯,等 . 基于 FaceNet 的煤矿人员考勤识别 [J]. 煤炭技术,2022,41(9):189-191.

[2] 李 欣, 黄 镕, 陈哲辉, 等 . 一种改进的 MTCNN 和FaceNet 人脸检测及识别算法研究 [J]. 广东石油化工学院学报,2021,31(1):45-47+53.

[3] 翟奕隆 . 基于深度神经网络的视频人脸识别研究 [D]. 北京:北京工业大学,2019.

[4] 花德培,孙彦赞,吴雅婷,等 . 基于 TK1 的驾考人脸识别系统 [J]. 工业控制计算机,2019,32(9):34-35+37.

[5] 张克军,韩娜,陈欣然,等 . 基于脑电图的新型情绪识别特征提取方法 [J]. 华南师范大学学报:自然科学版,2019,51(5):6-11.


作者简介:肖蕊(1998—),女,汉族,山西运城人,硕士研究生在读,研究方向:图像识别。