摘 要:利用超声法对温度场进行检测是一种新型的传感测温方法,在对温度场进行检测时选择一种适合的超声重建算法非常重要。笔者对截断奇异值分解法、Tikhonov 正则化法、代数重建法和联合迭代重建算法等四种重建算法进行比较发现:在重建质量方面,在低噪声的情况下,截断奇异值分解法和Tikhonov 正则化法重建质量都是最佳的;在噪声较大的情况下,联合迭代重建算法的结果最为理想;在运算速度方面,Tikhonov 正则化法的速度最快。总体来讲,截断奇异值分解法与Tikhonov正则化法优于代数重建法。在实际应用中,针对不同的情况应该选择不同的重建算法。
关键词:温度测量;反问题;重建算法;成像算法
中图分类号:TP391.41;TB553 文献标识码:A 文章编号:2096-4706(2018)12-0146-05
Comparative Research on the Reconstruction Algorithms for Acoustic Tomographyof Temperature Field
LIU Yan
(Institute of Thermal Power Technology,China Datang Corporation Science and Technology Research Institute,Beijing 100043,China)
Abstract:Using ultrasound to detect temperature field is a new kind of temperature sensing method. It is very important to selecta suitable ultrasound reconstruction algorithm when detecting temperature field. The author compares four reconstruction algorithms:truncated singular value decomposition,Tikhonov regularization,algebraic reconstruction and joint iterative reconstruction. It is foundthat in terms of reconstruction quality,truncated singular value decomposition and Tikhonov regularization have the best reconstructionquality in the case of low noise;in the case of large noise,the reconstruction quality of truncated singular value decomposition andTikhonov regularization is the best. The results of thejoint iterative reconstruction algorithm are the best,and the Tikhonov regularizationmethod is the fastest in the speed of operation. In general,truncated singular value decomposition method and Tikhonov regularizationmethod are better than algebraic reconstruction methods. In practical applications,different reconstruction algorithms should be chosen fordifferent situations.
Keywords:temperature measurement;inverse problem;reconstruction algorithms;tomography algorithms
参考文献:
[1] 向寓华,张家元,张小辉. 基于数值模拟的四角切圆燃烧锅炉冷态试验 [J]. 热力发电,2012,41(12):14-18.
[2] 李言钦,陈世英,周怀春,等. 基于先验知识的炉内速度场声波法测量研究 [J]. 动力工程学报,2012,32(4):261-267.
[3] 肖庭延,于慎根,王彦飞. 反问题的数值解法 [M]. 北京:科学出版社,2003
[4] Tikhonov A. N,Arsenin V. Y,Bell J B. Solution of ill-posedproblems [J].Mathematics of Computation,1978,32(144):1320-1322.
[5] Hansen P C,O'Leary D P. The Use of the L-Curve in theRegularization of Discrete Ill-Posed Problems [J].Siam J.sci.comput,1993,14(6):1487-1503.
[6] 何敏,刘泽,董峰,等. 电磁层析成像技术图像重建的仿真研究 [J]. 天津大学学报,2001(4):435-438.
作者简介:刘岩(1987-),男,黑龙江绥滨人,工程师,2015 年毕业于华北电力大学,博士,研究方向:电站汽轮机节能优化。