摘 要:传统工业生产车间设备检修流程复杂,工业大数据对边缘端设备的智能化要求日益增加。为提高传统工业设备异常信号的监测效率,推动工业 4.0 的智能化生产的发展,根据业内对边缘计算与人工智能的研究与发展趋势,分析了传统工业场景下数据与健康的关系。通过分析结果探究边缘智能相关技术在工业设备健康监测方面的应用场景。
关键词:工业大数据;边缘智能;边缘计算;人工智能
DOI:10.19850/j.cnki.2096-4706.2021.19.044
基金项目:湖南省研究生创新基金资助项 目(CX20201050)
中图分类号:TP18 文献标识码:A 文章编号:2096-4706(2021)19-0171-03
Research on Edge Intelligence in the Field of Industrial Equipment Health Monitoring
WANG Songye 1 , MAN Junfeng1,2, LI Tingli 1
(1.School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China; 2.School of Automation, Central South University, Changsha ,410083, China)
Abstract: The equipment maintenance process of traditional industrial production workshop is complex, and the intelligent requirements of industrial big data for edge equipment are increasing. In order to improve the monitoring efficiency of abnormal signal of traditional industrial equipment and promote the development of intelligent production of industry 4.0, the relationship between data and health in traditional industrial scene is analyzed according to the research and development trend of edge computing and artificial intelligence in the industry. Through the analysis results, explore the application scenarios of edge intelligence related technology in industrial equipment health monitoring.
Keywords: industrial big data; edge intelligence; edge computing; artificial intelligence
参考文献:
[1] 工业和信息化部 . 智能制造发展规划(2016—2020 年) [EB/ OL].[2021-08-22].https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201706/ t20170620_1196811.html?code=&state=123.
[2] 唐雄燕,王友祥,陈杲,等.边缘计算产业现状与发展建议 [J]. 信息通信技术与政策,2020(2):1-5.
[3] KESHAVARZI A,HOEK W V D. Edge Intelligence— On the Challenging Road to a Trillion Smart Connected IoTDevices [J].IEEE Design & Test,2019,36(2):41-64.
[4] JEONG H J,LEE H J,SHIN C H,et al. IONN: Incremental Offloading of Neural Network Computations from Mobile Devices to Edge Servers [C]//Proceedings of the ACM Symposium on Cloud Computing,Carlsbad CA:Association for Computing Machinery,2018:401-411.
[5] Li Z, Samavatian M H, Bacha A , et al. Adaptive Parallel Execution of Deep Neural Networks on Heterogeneous Edge Devices [C]. information security, 2019:195-208. DOI:10.1145/3318216.3363312
[6] 付韬 . 移动边缘计算系统服务器测试方法 [J]. 电子技术与软件工程,2018(13):122-123.
[7] 秦志威,栗娟,刘晓,等 . 端边云协同环境下能耗感知的工作流实时调度策略 [J]. 计算机集成制造系统 .
[8] 蔡振启,李志军 . 面向工业物联网的移动边缘计算任务卸载与资源分配 [J]. 工业控制计算机,2021,34(8):50-52+54.
[9] 何峰,王巍俊,魏光明 . 基于边缘计算的智能分布式馈线自动化系统 [J]. 电力设备管理,2021(6):41-43.
作者简介:王松烨(1996—),男,汉族,河北石家庄人,硕士在读,研究方向:边缘计算;满君丰(1976—),男,满族, 黑龙江海伦人,教授,博士,研究方向:工业大数据分析;李亭立 (1997—),女,汉族,湖南岳阳人,硕士在读,研究方向:工业 大数据。