摘 要:为降低仿生手臂的抓取失败率,提升手臂整体的灵活度和灵敏性,给使用者带来更加舒适、稳定的应用效果,结合人体工学技术对仿生手臂进行创新设计与开发。先进行受力垫片与仿生驱动卡扣的搭接,设计基础环境中的驱动结构,并针对手臂移动的状态,完成对仿生手臂关节气动肌肉拮抗处理。再结合人体工学,逐步构建柔性触觉感知模型,最终采用重复振动法实现仿生手臂设计。测试结果表明:与传统气动肌肉仿生手臂和传统 LeapMotion 仿生手臂相比,所设计的人体工学仿生手臂的抓取失败率更低,均控制在 1% 以下,表明其应用误差较小,更加便利、高效,具有更高的实际应用价值。
关键词:人体工学;仿生手臂;机械设计;移动调控;主控结构;仿生原理
DOI:10.19850/j.cnki.2096-4706.2022.21.035
基金项目:2023 年广东省科技创新战略专项资金(“攀登计划”专项资金)(pdjh2023b0928);广东省高职教育教学改革研究与实践项目(GDJG2021175);2021 年校级质量工程移动互联网应用技术协同创新中心阶段性成果(2021ZL01)
中图分类号:TP242 文献标识码:A 文章编号:2096-4706(2022)21-0144-04
Innovative Design and Development of a Bionic Arm Based on Ergonomics
HUANG Jiayi, ZHOU Yiyan, WU Junting, YU Wenjie, ZHUANG Jiacan
(School of Information Engineering and Business Management, Guangdong Nanhua Vocational College of Industry and Commerce, Guangzhou 510507, China)
Abstract: In order to reduce the grasping failure rate of the bionic arm, improve the overall flexibility and sensitivity of the arm, and bring more comfortable and stable application effects to users, the bionic arm is innovatively designed and developed in combination with ergonomic technology. Firstly, the stressed gasket is overlapped with the bionic driving buckle, the driving structure in the basic environment is designed, and the pneumatic muscle antagonism of the bionic arm joint is completed according to the moving state of the arm. Combined with ergonomics, a flexible tactile sensing model is gradually constructed, and finally the bionic arm design is realized by the repeated vibration method. The test results show that compared with the traditional pneumatic muscle bionic arm and the traditional LeapMotion bionic arm, the ergonomic bionic arm designed in this paper has a lower grasping failure rate, which is controlled below 1%, indicating that its application error is smaller, more convenient and efficient, and has higher practical application value.
Keywords: ergonomics; bionic arm; mechanical design; mobile control; main control structure; bionic principle
参考文献 :
[1] 刘许亮 . 智能制造机器人多手臂自适应协同控制方法研究[J]. 制造业自动化,2022,44(01):110-113.
[2] 罗颖杰,罗勇杰,张家伟,等 . 基于仿生机械臂与 AI 深度视觉的 ROV 水下机器人 [J]. 长江信息通信,2022,35(01):19-22.
[3] 杨程,韩迎鸽,吕会梅 . 绳驱动仿生软体机械臂结构设计与弯曲特性仿真 [J]. 佳木斯大学学报:自然科学版,2021,39(05):80-82+94.
[4] 王卓然,吴显威 . 智能家用手臂康复机器人设计 [J]. 包装工程,2020,41(12):355.
[5] 张钊,颜辉,何雨泽,等 . 机械手臂在仿生植物制造工厂的应用 [J]. 中外企业家,2020(09):138-139.
[6] 陈苏明,高正创,王若愚,等 . 基于图像识别的仿生机械臂研究 [J]. 信息与电脑(理论版),2020,32(05):116-118.
[7] 于仕泽,王周义,戴振东,等 . 一种面向航天需求的仿生柔性机械臂的设计 [J]. 机械制造与自动化,2020,49(01):134-137.
[8] 胡德良 . 利用大脑同时控制两个仿生手臂 [J]. 世界科学,2020(02):35-36.
[9] 靳文奎,何人可 . 人体工学适配设计机制与理念演变 [J].包装工程,2021,42(12):78-83.
作者简介:黄嘉怡(2002.09—),女,汉族,广东广州人,初级工程师,移动互联应用技术专业在读大学生,研究方向:软件技术;周怡燕(1985.09—),女,汉族,广东肇庆人,硕士,讲师,本科,研究方向:数据挖掘、软件技术;吴钧婷(2003.03—),女,汉族,广东广州人,高本金融服务与管理专业在读大学生,研究方向:软件技术;余文杰(2002.05—),男,汉族,广东梅州人,市场营销专业在读大学生,研究方向:软件技术;庄嘉灿(2002.07—),男,汉族,广东广州人,移动互联应用技术专业在读大学生,研究方向:软件技术。